试题
题目:
如图,已知⊙O的半径为
10
,AB=6,△ABC内接于⊙O,BD⊥AC于D,则sin∠CBD的值等于( )
A.
1
3
B.
10
10
C.
3
10
10
D.3
答案
B
解:连接OA、OB;
∵OM⊥AB,
∴AM=BM=3,∠AOM=∠BOM=
1
2
∠AOB;
又∵∠BCD=
1
2
∠AOB,
∴∠BOM=∠BCD,∠OBM=∠CBD;
在Rt△OBM中,
∵OB=
10
,BM=3,
∴OM=
OB
2
-
BM
2
=
10-9
=1,
∴sin∠OBM=sin∠CBD=
OM
OB
=
1
10
=
10
10
.
故选B.
考点梳理
考点
分析
点评
垂径定理;勾股定理;圆周角定理;锐角三角函数的定义.
连接OA、OB,由于OM⊥AB,根据垂径定理易证得∠BOM=
1
2
∠AOB,而由圆周角定理可得∠BCD=
1
2
∠AOB=∠BOM,因此∠CBD=∠OBM,只需求得∠OBM的正弦值即可;在Rt△OBM中,由垂径定理可得BM=4,已知⊙O的半径OB=5,由勾股定理可求得OM=3,即可求出∠OBM即∠CBD得正弦值,由此得解.
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )