试题
题目:
如图,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则⊙O的半径为( )
A.12
B.10
C.2
7
D.4
7
答案
D
解:延长AO交BC于D,作OE⊥BC于E,连接OB.
∵∠A=∠B=60°,
∴∠ADB=60°;,
∴△ADB为等边三角形;
∴BD=AD=AB=12;
∴OD=4,
又∵∠ADB=60°,
∴DE=
1
2
OD=2,OE=2
3
,
∴BE=12-2=10,
∴OB
2
=OE
2
+BE
2
=12+100=112,
∴OB=
112
=4
7
.
故选D.
考点梳理
考点
分析
点评
垂径定理;等边三角形的判定与性质;勾股定理.
延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE、OE的长;由勾股定理求的半径OB的长.
本题考查的是垂径定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )