试题
题目:
(2008·上海模拟)已知:如图,AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,BC=8,AD=10.
求:(1)OE的长;
(2)∠B的正弦值.
答案
解:(1)连接OE,OB,如图所示:
∵直径AD=10,
∴AO=OB=OD=5,
又AD⊥BC,
∴E为BC的中点,又BC=8,
∴BE=CE=
1
2
BC=4,
在Rt△BOE中,OB=5,BE=4,
根据勾股定理得:OE=
OB
2
-B
E
2
=3;
(2)∵AO=5,OE=3,
∴AE=AO+OE=5+3=8,
在Rt△ABE中,BE=4,AE=8,
根据勾股定理得:AB=
AE
2
+B
E
2
=4
5
,
则sin∠ABC=
AE
AB
=
8
4
5
=
2
5
5
.
解:(1)连接OE,OB,如图所示:
∵直径AD=10,
∴AO=OB=OD=5,
又AD⊥BC,
∴E为BC的中点,又BC=8,
∴BE=CE=
1
2
BC=4,
在Rt△BOE中,OB=5,BE=4,
根据勾股定理得:OE=
OB
2
-B
E
2
=3;
(2)∵AO=5,OE=3,
∴AE=AO+OE=5+3=8,
在Rt△ABE中,BE=4,AE=8,
根据勾股定理得:AB=
AE
2
+B
E
2
=4
5
,
则sin∠ABC=
AE
AB
=
8
4
5
=
2
5
5
.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理;锐角三角函数的定义.
(1)连接OB,由直径AD垂直于弦BC,利用垂径定理得到E为BC的中点,同时由直径AD的长求出半径的长,再由BC的长求出BE的长,在直角三角形OBE中,利用勾股定理求出OE的长即可;
(2)由(1)求出的OE长,根据AO+OE求出AE的长,在直角三角形ABE中,利用勾股定理求出AB的长,最后利用锐角三角函数定义即可求出sin∠ABC的值.
此题考查了垂径定理,勾股定理,以及锐角三角函数定义,熟练掌握定理是解本题的关键.
计算题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )