试题
题目:
(2002·盐城)如图,⊙O的直径AB=10,P为OA上一点,弦MN经过点P,若AP=2,MP=2,那么MN的长为( )
A.7
2
B.10
C.5
2
D.4
2
答案
B
解:∵AB=10,AP=2,
∴PB=AB-AP=8,
由相交弦定理得PA·PB=PM·PN,
∴PN=
PA×PB
PM
=
2×8
2
=8,
∴MN=PM+PN=10.
故选B.
考点梳理
考点
分析
点评
相交弦定理.
根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.
本题主要考查相交弦定理:圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等.
找相似题
(2004·南昌)如图,在平面直角坐标系中,⊙O′与两坐标分别交于A,B,C,D四点,已知:A(6,0),B(0,-3),C(-2,0),则点D的坐标为( )
(2002·苏州)如图,⊙O的弦AB=8cm,弦CD平分AB于点E.若CE=2cm,则ED长为( )
(2001·金华)如图,⊙O的弦CD交弦AB于P,AP=4,PB=3,CP=2,那么PD的长为( )
(2000·辽宁)如图,在⊙O中,弦AB与半径OC相交于点M,且OM=MC,若AM=1.5,BM=4,则OC的长为( )
(1998·丽水)如图,在⊙O中,直径CD与弦AB相交于点E,若BE=3,AE=4,DE=2,则⊙O的半径是( )