试题
题目:
一个迷不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球
28
28
个.
答案
28
解:由题意得:白球有
312
88
×8≈28个.
故答案为28.
考点梳理
考点
分析
点评
专题
利用频率估计概率.
共摸球400次,其中88次摸到黑球,那么有312次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为88:312;已知有8个黑球,那么按照比例,白球数量即可求出.
本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.
比例分配问题.
找相似题
(2013·铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
(2012·宿迁)绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的粒数m
96
282
382
570
948
1912
2850
发芽的频率
m
n
0.960
0.940
0.955
0.950
0.948
0.956
0.950
则绿豆发芽的概率估计值是 ( )
(2009·临夏州)在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( )
(2012·青岛一模)在一个不透明的袋子里装有3个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸100次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有( )
(2010·石家庄二模)把12个球(除颜色外没有区别)放到一个不透明的箱子里,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,要使得摸到白球、红球的频率分别稳定在
1
3
,
2
3
,则应准备的白球、红球的个数分别为( )