试题
题目:
(2010·石家庄二模)把12个球(除颜色外没有区别)放到一个不透明的箱子里,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,要使得摸到白球、红球的频率分别稳定在
1
3
,
2
3
,则应准备的白球、红球的个数分别为( )
A.3,9
B.9,3
C.4,8
D.8,4
答案
C
解:∵摸到白球、红球的频率分别稳定在
1
3
,
2
3
,
∴摸到白球、红球概率分别为
1
3
,
2
3
,
∴应准备的红球个数是白球的个数的两倍.
∴12个球中白球、红球的个数分别为12×
1
3
=4,12×
2
3
=8.
故选C.
考点梳理
考点
分析
点评
专题
利用频率估计概率.
由于摸到白球、红球的频率分别稳定在
1
3
,
2
3
,由此可以确定摸到白球、红球概率,然后利用概率即可确定选择项.
此题主要考查了利用频率估计概率,解题时首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题.
应用题.
找相似题
(2013·铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
(2012·宿迁)绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的粒数m
96
282
382
570
948
1912
2850
发芽的频率
m
n
0.960
0.940
0.955
0.950
0.948
0.956
0.950
则绿豆发芽的概率估计值是 ( )
(2009·临夏州)在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( )
(2012·青岛一模)在一个不透明的袋子里装有3个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸100次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有( )
在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么盒子中黄球的个数很可能是( )