试题
题目:
(2013·台湾)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?( )
A.20
B.35
C.40
D.55
答案
B
解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,
∴BP=PC,MP=MC,
∵∠PBC=70°,
∴∠BCP=
1
2
(180°-∠PBC)=
1
2
(180°-70°)=55°,
在长方形ABCD中,∠BCD=90°,
∴∠MCP=90°-∠BCP=90°-55°=35°,
∴∠MPC=∠MCP=35°.
故选B.
考点梳理
考点
分析
点评
矩形的性质;等腰三角形的性质.
根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.
本题考查了矩形的四个角都是直角的性质,等腰三角形两底角相等的性质以及等边对等角,是基础题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·宜宾)矩形具有而菱形不具有的性质是( )
(2013·湘西州)下列说法中,正确的是( )
(2013·泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10
5
cm,且tan∠EFC=
3
4
,那么该矩形的周长为( )
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )