试题
题目:
如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,求证:∠BOD=∠COE.
答案
证明:∵∠AFO=∠FBC+∠ACB=
1
2
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
1
2
∠BAC+
1
2
∠ABC+∠ACB]
=180°-[
1
2
(∠BAC+∠ABC)+∠ACB]
=180°-[
1
2
(180°-∠ACB)+∠ACB]
=180°-[90°+
1
2
∠ACB]
=90°-
1
2
∠ACB,
∴∠BOD=∠AOF=90°-
1
2
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
1
2
∠ACB,
∴∠BOD=∠COE.
证明:∵∠AFO=∠FBC+∠ACB=
1
2
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
1
2
∠BAC+
1
2
∠ABC+∠ACB]
=180°-[
1
2
(∠BAC+∠ABC)+∠ACB]
=180°-[
1
2
(180°-∠ACB)+∠ACB]
=180°-[90°+
1
2
∠ACB]
=90°-
1
2
∠ACB,
∴∠BOD=∠AOF=90°-
1
2
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
1
2
∠ACB,
∴∠BOD=∠COE.
考点梳理
考点
分析
点评
专题
三角形内角和定理;三角形的角平分线、中线和高.
在△AOF中,利用三角形的内角和定理,以及角平分线的定义,可以利用∠ACB表示出∠AOF,则∠BOD即可得到,然后在直角△OCE中,利用直角三角形的两个内角互余以及角平分线的定义,即可利用∠ACB表示出∠COE,从而证得结论.
本题主要考查了角平分线的定义,三角形的外角的性质以及三角形的内角和定理,正确求得∠AOF是关键.
证明题.
找相似题
(2013·泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是( )
如图,在△ABC中,∠B=42°,∠C=72°,AD是△ABC的角平分线,
①∠BAC等于多少度?简要说明理由;
②∠ADC等于多少度?简要说明理由.
在△ABC中,已知∠A+∠B=∠C,试证明△ABC是直角三角形.
如图:已知AB∥CD,∠1=∠2,则∠E与∠F存在怎样的关系?试证明你的结论.
实践与探索!如图,△ABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数,
①若∠ABC=40°,∠ACB=60°,则∠BIC=
130°
130°
;
②若∠ABC+∠ACB=80°,则∠BIC=
140°
140°
;
③若∠A=120°,则∠BIC=
150°
150°
;
④从上述计算中,我们能发现∠BIC与∠A的关系式,并加以证明.