试题
题目:
如图,矩形ABCD中,P是AB上一点,将矩形ABCD沿PD折叠,点A恰好落BC边上E点处,若DE=3PE,CD=9,则CE的长为
12
12
.
答案
12
解:∵四边形ABCD是矩形,
∴AB=CD=9,∠B=∠C=∠A=90°,
∴∠BPE+∠BEP=90°,
设PE=x,
则DE=3PE=3x,
由折叠的性质可得:AP=PE=x,∠PED=∠A=90°,
∴∠BEP+∠CED=90°,BP=AB-AP=9-x,
∴∠BPE=∠CED,
∴△BPE∽△CED,
∴
PB
CE
=
PE
DE
,
∴
9-x
CE
=
1
3
,
∴CE=3(9-x),
在Rt△CED中,DE
2
=EC
2
+CD
2
,
∴(3x)
2
=[3(9-x)]
2
+9
2
,
解得:x=5,
∴CE=3(9-x)=12.
故答案为:12.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由四边形ABCD是矩形与折叠的性质,易证得△BPE∽△CED,设PE=x,由DE=3PE,可得DE=3x,PB=9-x,然后由相似三角形的对应边成比例,可用x表示出CE的长,然后由勾股定理可得方程(3x)
2
=[3(9-x)]
2
+9
2
,解此方程即可求得答案.
此题考查了相似三角形的判定与性质、矩形的性质以及折叠的性质.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )