试题

题目:
青果学院如图,将矩形ABCD沿着直线BD折叠使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分即△BED的面积为
10
10

答案
10

解:∵AD∥BC(矩形的性质),
∴∠DBC=∠BDA(两直线平行,内错角相等);
∵∠C′BD=∠DBC(反折的性质),
∴∠C′BD=∠BDA(等量代换),
∴DE=BE(等角对等边);
设DE=x,则AE=8-x.在△ABE中,
x2=42+(8-x)2
解得x=5.
∴S△DBE=
1
2
×5×4=10;
故答案是:10.
考点梳理
翻折变换(折叠问题).
S△BED=
1
2
DE·AB,所以需求DE的长.根据∠C′BD=∠DBC=∠BDA得DE=BE,设DE=x,则AE=8-x.根据勾股定理求BE即DE的长.
此题通过折叠变换考查了三角形的有关知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后对应边、角相等.
找相似题