试题
题目:
如图,将矩形纸片ABCD沿EF折叠,点B恰好落在CD边的中点B′处,点A落在点A′处,A′B′交AD边于点G.若AB=2,BC=3,则
GB′
BF
的值为
3
4
3
4
.
答案
3
4
解:∵将矩形纸片ABCD沿EF折叠,点B恰好落在CD边的中点B′处,
∴DB′=B′C=1,BF=B′F,
∴在R△B′FC中,设BF=x,则FC=3-x,B′F=x,
FC
2
+B′C
2
=B′F
2
,
∴(3-x)
2
+1
2
=x
2
,
解得:x=
5
3
,
∵∠A′B′F=90°,
∴∠GB′D+∠FB′C=90°,
∵∠DGB′+∠DB′G=90°,
∴∠DGB′=∠FB′C,
又∵∠D=∠C,
∴△GDB′∽△B′CF,
∴
GB′
FB′
=
DB′
FC
,
∴
GB′
5
3
=
1
3-
5
3
,
解得:GB′=
5
4
.
∴
GB′
BF
的值为:
5
4
5
3
=
3
4
.
故答案为:
3
4
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
利用翻折变换的性质以及勾股定理得出B′F的长,进而得出△GDB′∽△B′CF,利用比例的性质得出GB′的长即可得出答案即可.
此题主要考查了翻折边换的性质以及相似三角形的判定与性质等知识,根据相似三角形的性质得出GB′的长是解题关键.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )