试题
题目:
如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则GC=
6
6
.
答案
6
解;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
在Rt△ABG和Rt△AFG中,
AG=AG
AB=AF
,
∴△ABG≌△AFG(HL),
∴FG=GB,
∵CD=3DE
,AB=12,
∴DE=4,CE=8,
设BG=x,则CG=12-x,GE=x+4,
∵GE
2
=CG
2
+CE
2
∴(x+4)
2
=(12-x)
2
+8
2
,
解得x=6,
∴BG=6,
∴GC=12-6=6.
故答案为:6.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
首先根据正方形的性质可得AD=AB=BC=CD,∠D=∠B=∠BCD=90°,再根据折叠的性质可得AD=AF,DE=EF,∠D=∠AFE=90°,再证明△ABG≌△AFG可得FG=GB,然后设BG=x,则CG=12-x,GE=x+4,再利用勾股定理算出x的值,进而可得到GC的长.
此题主要考查了翻折变换,关键是证明△ABG≌△AFG得到FG=GB,再利用勾股定理计算出BG的长.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )