试题
题目:
如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△A′E′B′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为
3或6
3或6
cm.
答案
3或6
解:①∠B′EC=90°时,如图1,∠BEB′=90°,
由翻折的性质得∠AEB=∠AEB′=
1
2
×90°=45°,
∴△ABE是等腰直角三角形,
∴BE=AB=6cm;
②∠EB′C=90°时,如图2,
由翻折的性质∠AB′E=∠B=90°,
∴A、B′、C在同一直线上,
AB′=AB,BE=B′E,
由勾股定理得,AC=
AB
2
+BC
2
=
6
2
+8
2
=10cm,
∴B′C=10-6=4cm,
设BE=B′E=x,则EC=8-x,
在Rt△B′EC中,B′E
2
+B′C
2
=EC
2
,
即x
2
+4
2
=(8-x)
2
,
解得x=3,
即BE=3cm,
综上所述,BE的长为3或6cm.
故答案为:3或6.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
分①∠B′EC=90°时,根据翻折变换的性质求出∠AEB=45°,然后判断出△ABE是等腰直角三角形,从而求出BE=AB;②∠EB′C=90°时,∠AB′E=90°,判断出A、B′、C在同一直线上,利用勾股定理列式求出AC,再根据翻折变换的性质可得AB′=AB,BE=B′E,然后求出B′C,设BE=B′E=x,表示出EC,然后利用勾股定理列出方程求解即可.
本题考查了翻折变换,等腰直角三角形的判断与性质,勾股定理的应用,难点在于分情况讨论,作出图形更形象直观.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )