试题
题目:
如图,等边三角形ABC的边长为2cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为
6
6
cm.
答案
6
解:∵等边三角形ABC的边长为2cm,
∴AB=BC=AC=2cm,
∵△ADE沿直线DE折叠,点A落在点A′处,
∴AD=A′D,AE=A′E,
∴阴影部分图形的周长为:BD+A′D+BC+A′E+EC=BD+AD+BC+AE+EC=AB+BC+AC=2+2+2=6(cm).
故答案为:6.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由将△ADE沿直线DE折叠,点A落在点A′处,根据折叠的性质,即可得AD=A′D,AE=A′E,又由等边三角形ABC的边长为2cm,易得阴影部分图形的周长为:BD+A′D+BC+A′E+EC=BD+AD+BC+AE+EC=AB+BC+AC,则可求得答案.
此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用,注意掌握折叠前后图形的对应关系.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )