试题
题目:
如图,矩形ABCD中,AB=8cm,AD=10cm,E是CD上的一点,沿直线AE把△ADE折叠,点D恰好落在边BC上一点F处,则DE=
5
5
cm.
答案
5
解:设DE=xcm,则EC=(CD-x)cm,
∵矩形ABCD中,AB=8cm,AD=10cm,
∴BC=AD=10cm,CD=AB=8cm,
∵AE为折痕,
∴AF=AD=10cm,DE=EF=xcm,
Rt△ABF中,BF=
AF
2
-
AB
2
=
10
2
-
8
2
=6,
∴FC=10-6=4,
Rt△EFC中,EF
2
=FC
2
+EC
2
,
即x
2
=4
2
+(8-x)
2
,
解得x=5(cm).
故答案为:5.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由AE为折痕,可得AF=AD,DE=EF,在直角三角形ABF中,求出BF的大小,得到FC,设出DE=x,表示出EF、EC的长度,通过勾股定理可求得答案.
本题考查了翻折变换问题;由翻折得到相等的线段,两次利用勾股定理是正确解答本题的关键.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )