试题
题目:
(2007·赤峰)如图Rt△ABO中,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到OA′B′的位置.
(1)求点B′的坐标.
(2)求顶点A从开始到A′点结束经过的路径长.
答案
解:(1)过点B′作B′D⊥x轴于D,
由旋转的性质知,∠A′=30°,∠A′OB′=60°,OB′=2,OA′=4,
∴OD=OB′cos60°=
2·
1
2
=1,
DB′=OB′sin60°=2
3
2
=
3
,
∴B′的坐标为:B′(1,
3
)
.
(2)∵∠AOB=60°,
∴∠AOA′=180°-60°=120°.
∵Rt△ABO中,∠A=30°,OB=2,
∴OA=2OB=4,
∴A由开始到结束所经过的路径长为:
120·π·4
180
=
8π
3
.
解:(1)过点B′作B′D⊥x轴于D,
由旋转的性质知,∠A′=30°,∠A′OB′=60°,OB′=2,OA′=4,
∴OD=OB′cos60°=
2·
1
2
=1,
DB′=OB′sin60°=2
3
2
=
3
,
∴B′的坐标为:B′(1,
3
)
.
(2)∵∠AOB=60°,
∴∠AOA′=180°-60°=120°.
∵Rt△ABO中,∠A=30°,OB=2,
∴OA=2OB=4,
∴A由开始到结束所经过的路径长为:
120·π·4
180
=
8π
3
.
考点梳理
考点
分析
点评
专题
坐标与图形变化-旋转;弧长的计算.
(1)过点B′作B′D⊥x轴于D,由旋转的性质可知OB′的长,从而求出OD,DB′的长.就可写出坐标.
(2)顶点A从开始到A′点结束经过的路径长就是一段弧长,由已知题中给出的条件圆心角是120度,半径是OA的长度,然后利用弧长公式计算.
本题综合考查了旋转的性质及直角坐标系的知识及弧长的计算能力.
计算题.
找相似题
(2013·荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为( )
(2011·宜昌)如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA
1
B
1
C
1
,那么点B
1
的坐标为( )
(2011·德阳)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是( )
(2010·沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )
(2010·娄底)如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)连接AB得到△AOB.现将△AOB绕原点O顺时针旋转90°得到△A′OB′,则A对应点A′的坐标为( )