试题
题目:
抛物线y=a(x-2)
2
-2的图象如图所示,则它关于y轴对称的抛物线的解析式为
y=2(x+2)
2
-2
y=2(x+2)
2
-2
.
答案
y=2(x+2)
2
-2
解:将点(1,0)代入y=a(x-2)
2
-2中,得a-2=0,
解得a=2,
又原抛物线顶点坐标为(2,-2),
∴它关于y轴对称的抛物线顶点坐标为(-2,-2),
∴新抛物线的解析式为y=2(x+2)
2
-2.
故本题答案为:y=2(x+2)
2
-2.
考点梳理
考点
分析
点评
专题
二次函数图象与几何变换.
将点(1,0)代入y=a(x-2)
2
-2中先求a,可知原抛物线顶点坐标为(2,-2),则它关于y轴对称的抛物线顶点坐标为(-2,-2),由此可求新抛物线的解析式.
本题考查了抛物线的轴对称与抛物线解析式的关系.关键是明确轴对称前后顶点坐标的变化规律.
计算题.
找相似题
(2013·上海)如果将抛物线y=x
2
+2向下平移1个单位,那么所得新抛物线的表达式是( )
(2013·茂名)下列二次函数的图象,不能通过函数y=3x
2
的图象平移得到的是( )
(2013·聊城)如图,在平面直角坐标系中,抛物线y=
1
2
x
2
经过平移得到抛物线y=
1
2
x
2
-2x
,其对称轴与两段抛物线所围成的阴影部分的面积为( )
(2013·哈尔滨)把抛物线y=(x+1)
2
向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )
(2013·毕节地区)将二次函数y=x
2
的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )