试题
题目:
如图,将平面直角坐标系中的△AOB绕点O顺时针旋转90°得△A′OB′.已知∠AOB=60°,∠B=90°,AB=
3
,则点B′的坐标是( )
A.
(
3
2
,
1
2
)
B.
(
3
2
,
3
2
)
C.
(
3
2
,
3
2
)
D.
(
1
2
,
3
2
)
答案
A
解:如图,过点B′作B′C⊥x轴于点C,
∵△AOB绕O点顺时针旋转90°得△A′OB′,
∴OB′=OB,∠BOB′=90°,
∵∠AOB=60°,OB=1,
∴OB′=1,
∠B′OC=180°-∠AOB-∠BOB′=180°-60°-90°=30°,
∴OC=OB′cos30°=1×
3
2
=
3
2
,
B′C=OB′sin30°=1×
1
2
=
1
2
,
∴B′的坐标为(
3
2
,
1
2
),
故选A.
考点梳理
考点
分析
点评
坐标与图形变化-旋转.
过点B′作B′C⊥x轴于点C,根据旋转变换的性质可得OB′=OB,再根据平角等于180°求出∠B′OC的度数,然后解直角三角形求出OC,B′C的长度,即可得解.
本题考查了坐标与图形变化-旋转,用到的知识点是旋转变换的性质,解直角三角形,作辅助线构造出直角三角形是解题的关键.
找相似题
(2013·荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为( )
(2011·宜昌)如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA
1
B
1
C
1
,那么点B
1
的坐标为( )
(2011·德阳)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是( )
(2010·沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )
(2010·娄底)如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)连接AB得到△AOB.现将△AOB绕原点O顺时针旋转90°得到△A′OB′,则A对应点A′的坐标为( )