试题
题目:
如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形ODEF,则E的坐标为( )
A.(2,4 )
B.(-2,4)
C.(4,2)
D.(2,-4)
答案
C
解:∵矩形OABC绕着原点顺时针旋转90°得到矩形ODEF,
∴OD=OA=4,OF=OC=2,
又∵点E在第一象限,
∴点E的坐标为(4,2).
故选C.
考点梳理
考点
分析
点评
坐标与图形变化-旋转.
根据旋转变换只改变图形的位置不改变图形的形状与大小可得OD=OA,OF=OC,再根据点E在第一象限写出点E的坐标即可.
本题考查了坐标与图形变化-旋转,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.
找相似题
(2013·荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为( )
(2011·宜昌)如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA
1
B
1
C
1
,那么点B
1
的坐标为( )
(2011·德阳)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是( )
(2010·沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )
(2010·娄底)如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)连接AB得到△AOB.现将△AOB绕原点O顺时针旋转90°得到△A′OB′,则A对应点A′的坐标为( )