试题
题目:
一个三角形的两边长分别为2和6,第三边长为偶数,则这个三角形的周长是
14
14
.
答案
14
解:根据三角形的三边关系,得
6-2<x<6+2,
即4<x<8.
又∵第三边长是偶数,则x=6.
∴三角形的周长是2+6+6=14;
则该三角形的周长是14.
故答案是14.
考点梳理
考点
分析
点评
专题
三角形三边关系.
已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为偶数,就可以知道第三边的长度,从而可以求出三角形的周长.
本题考查了三角形三边关系,需要理解的是如何根据已知的两条边求第三边的范围.同时注意第三边长为偶数这一条件.
计算题.
找相似题
(2013·宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )
(2013·温州)下列各组数可能是一个三角形的边长的是( )
(2012·长沙)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )
(2011·来宾)已知一个三角形的两边长分别是2和3,则下列数据中,可作为第三边的长的是( )
(2011·滨州)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )