试题
题目:
已知:1+3=4=2
2
,
1+3+5=9=3
2
,
1+3+5+7=16=4
2
,
…
根据上面各式的规律可知:
1+3+5+7+…+11=
6
2
6
2
;
1+3+5+7+…+(2n+1)=
(n+1)
2
(n+1)
2
.(其中n为自然数)
答案
6
2
(n+1)
2
解:(1)因为1+3=4=2
2
,
1+3+5=9=3
2
,
1+3+5+7=16=4
2
,
1+3+5+7+9=25=5
2
,
…
1+3+5+7+…+11=36=6
2
;
(2)1+3+5+7+…+(2n+1)=(n+1)
2
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)由1+3=4=2
2
,1+3+5=9=3
2
,1+3+5+7=16=4
2
,1+3+5+7+9=25=5
2
,…可以看出连续奇数的和等于数的个数的平方;
(2)第n个奇数(n≥1)表示为2n+1,因此得到一般规律.
本题考查从奇数1开始,连续奇数的和等于数的个数的平方.
规律型.
找相似题
请你观察图,得出计算规律,利用规律完成下列问题:
1=1
2
;
1+3=2
2
;
1+3+5=3
2
;
1+3+5+7=4
2
;
1+3+5+7+9=5
2
1+3+5+7+9+11=(
6
6
)
2
…
1+3+5+7+9+…+(2n-1)=(
n
n
)
2
(n为正整数)
同学们一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)回答下列问题:
根据前面各式的规律,请写出(a+b)
5
=
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
.
观察下面这列数:
1
2
,-
1
6
,
1
12
,-
1
20
,
1
30
,-
1
42
,…
.则这列数的第100个数是
-
1
10100
-
1
10100
.
下列是有规律排列的一列数:
1
2
,
-
1
4
,
1
8
,
-
1
16
,
1
32
,
-
1
64
,…请观察此数列的规律,按此规律,第n个数应是
(-1
)
n+1
·
1
2
n
(-1
)
n+1
·
1
2
n
.
寻找规律,根据规律填空:
1
3
,
-
2
15
,
3
35
,
-
4
63
,
5
99
,
-
6
143
-
6
143
,…,第n个数是
(-1
)
n+1
n
(2n-1)(2n+1)
(-1
)
n+1
n
(2n-1)(2n+1)
.