试题
题目:
(2012·石景山区一模)一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):
第1行
1
第2行
3 5
第3行
7 9 11 13
…
…
则第4行中的最后一个数是
29
29
,第n行中共有
2
n-1
2
n-1
个数,第n行的第n个数是
2
n
+2n-3
2
n
+2n-3
.
答案
29
2
n-1
2
n
+2n-3
解:第一行有1个数,最后一个是1,第一个数是1
第二行有2个数,最后一个是5,第二个数是5
第三行有4个数,最后一个是13,第三个数是11
…
故第n行共有2
n-1
个数,第n个数是2
n
+2n-3.
第4行共有8个数,最后一个是29.
故答案为29,2
n-1
2
n
+2n-3
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
先根据题意可知第n行有2
n-1
个数,然后求得第4行的个数,最后确定最后一个数是多少.
本题考查了数字的变化类问题,解题的关键是仔细观察每个数字的关系,并从中找到规律.
压轴题.
找相似题
请你观察图,得出计算规律,利用规律完成下列问题:
1=1
2
;
1+3=2
2
;
1+3+5=3
2
;
1+3+5+7=4
2
;
1+3+5+7+9=5
2
1+3+5+7+9+11=(
6
6
)
2
…
1+3+5+7+9+…+(2n-1)=(
n
n
)
2
(n为正整数)
同学们一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)回答下列问题:
根据前面各式的规律,请写出(a+b)
5
=
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
.
观察下面这列数:
1
2
,-
1
6
,
1
12
,-
1
20
,
1
30
,-
1
42
,…
.则这列数的第100个数是
-
1
10100
-
1
10100
.
下列是有规律排列的一列数:
1
2
,
-
1
4
,
1
8
,
-
1
16
,
1
32
,
-
1
64
,…请观察此数列的规律,按此规律,第n个数应是
(-1
)
n+1
·
1
2
n
(-1
)
n+1
·
1
2
n
.
寻找规律,根据规律填空:
1
3
,
-
2
15
,
3
35
,
-
4
63
,
5
99
,
-
6
143
-
6
143
,…,第n个数是
(-1
)
n+1
n
(2n-1)(2n+1)
(-1
)
n+1
n
(2n-1)(2n+1)
.