试题
题目:
观察:2=1×2,2+4=2×3,2+4+6=3×4,…,试推算2+4+6+…+2n的公式,并利用推算公式计算100+102+…+200.
答案
解:2=1×2,
2+4=2×3,
2+4+6=3×4,
…
因此2+4+6+…+2n=n(n+1);
100+102+…+200,
=2+4+6+8+10+…200-(2+4+6+8+…98),
=100(100+1)-49(49+1),
=10100-2450,
=7650.
解:2=1×2,
2+4=2×3,
2+4+6=3×4,
…
因此2+4+6+…+2n=n(n+1);
100+102+…+200,
=2+4+6+8+10+…200-(2+4+6+8+…98),
=100(100+1)-49(49+1),
=10100-2450,
=7650.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
由等式可知左边是连续偶数的和,右边结果的第一个因数是数的个数,第二个因数是数的个数+1,由此规律即可解答.
此题考查连续偶数和的计算公式:2+4+6+…+2n=n(n+1),要仔细观察等式,得出结论,并会灵活运用公式进行计算.
规律型.
找相似题
请你观察图,得出计算规律,利用规律完成下列问题:
1=1
2
;
1+3=2
2
;
1+3+5=3
2
;
1+3+5+7=4
2
;
1+3+5+7+9=5
2
1+3+5+7+9+11=(
6
6
)
2
…
1+3+5+7+9+…+(2n-1)=(
n
n
)
2
(n为正整数)
同学们一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)回答下列问题:
根据前面各式的规律,请写出(a+b)
5
=
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
.
观察下面这列数:
1
2
,-
1
6
,
1
12
,-
1
20
,
1
30
,-
1
42
,…
.则这列数的第100个数是
-
1
10100
-
1
10100
.
下列是有规律排列的一列数:
1
2
,
-
1
4
,
1
8
,
-
1
16
,
1
32
,
-
1
64
,…请观察此数列的规律,按此规律,第n个数应是
(-1
)
n+1
·
1
2
n
(-1
)
n+1
·
1
2
n
.
寻找规律,根据规律填空:
1
3
,
-
2
15
,
3
35
,
-
4
63
,
5
99
,
-
6
143
-
6
143
,…,第n个数是
(-1
)
n+1
n
(2n-1)(2n+1)
(-1
)
n+1
n
(2n-1)(2n+1)
.