试题

题目:
青果学院探索规律:观察下面由※组成的图案和算式,并解答问题.
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)试猜想1+3+5+7+9+…+19=
100
100

(2)试猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
(n+2)2
(n+2)2

(3)请用上述规律计算:1001+1003+1005+…+2009+2011(请算出最后数值哦!)
答案
100

(n+2)2

解:(1)1+3+5+7+9+…+19=(
1+19
2
2=100;

(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3),
=(
1+2n+3
2
2
=(n+2)2
故答案为:100;(n+2)2

(3)1001+1003+1005+…+2009+2011,
=(
1+2011
2
2-(
1+999
2
2
=10062-5002
=1012036-250000,
=762036.
考点梳理
规律型:数字的变化类.
(1)(2)观察不难发现,从1开始的连续奇数的和等于首尾两个奇数的和的一半的平方,根据此规律进行计算即可得解;
(3)用从1开始到2011的和减去从1开始到999的和,然后列式进行计算即可得解.
本题是对数字变化规律的考查,观察出平方的底数与等式左边首尾两个奇数的关系是解题的关键,也是本题的难点.
规律型.
找相似题