试题
题目:
探索规律:观察下面由※组成的图案和算式,并解答问题.
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)试猜想1+3+5+7+9+…+19=
100
100
;
(2)试猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
(n+2)
2
(n+2)
2
;
(3)请用上述规律计算:1001+1003+1005+…+2009+2011(请算出最后数值哦!)
答案
100
(n+2)
2
解:(1)1+3+5+7+9+…+19=(
1+19
2
)
2
=100;
(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3),
=(
1+2n+3
2
)
2
,
=(n+2)
2
;
故答案为:100;(n+2)
2
;
(3)1001+1003+1005+…+2009+2011,
=(
1+2011
2
)
2
-(
1+999
2
)
2
,
=1006
2
-500
2
,
=1012036-250000,
=762036.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)(2)观察不难发现,从1开始的连续奇数的和等于首尾两个奇数的和的一半的平方,根据此规律进行计算即可得解;
(3)用从1开始到2011的和减去从1开始到999的和,然后列式进行计算即可得解.
本题是对数字变化规律的考查,观察出平方的底数与等式左边首尾两个奇数的关系是解题的关键,也是本题的难点.
规律型.
找相似题
请你观察图,得出计算规律,利用规律完成下列问题:
1=1
2
;
1+3=2
2
;
1+3+5=3
2
;
1+3+5+7=4
2
;
1+3+5+7+9=5
2
1+3+5+7+9+11=(
6
6
)
2
…
1+3+5+7+9+…+(2n-1)=(
n
n
)
2
(n为正整数)
同学们一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)回答下列问题:
根据前面各式的规律,请写出(a+b)
5
=
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
a
5
+5a
4
b+10a
3
b
2
+10a
2
b
3
+5ab
4
+b
5
.
观察下面这列数:
1
2
,-
1
6
,
1
12
,-
1
20
,
1
30
,-
1
42
,…
.则这列数的第100个数是
-
1
10100
-
1
10100
.
下列是有规律排列的一列数:
1
2
,
-
1
4
,
1
8
,
-
1
16
,
1
32
,
-
1
64
,…请观察此数列的规律,按此规律,第n个数应是
(-1
)
n+1
·
1
2
n
(-1
)
n+1
·
1
2
n
.
寻找规律,根据规律填空:
1
3
,
-
2
15
,
3
35
,
-
4
63
,
5
99
,
-
6
143
-
6
143
,…,第n个数是
(-1
)
n+1
n
(2n-1)(2n+1)
(-1
)
n+1
n
(2n-1)(2n+1)
.