试题
题目:
已知如图:长方形ABCD中,AB=3,BC=4,将△BCD沿BD翻折,点C落在点F处.
(1)说明:△BED为等腰三角形;
(2)求AE的长.
答案
解:(1)由折叠的性质可得:∠EBD=∠DBC,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠EDB=∠DBC,
∴∠EBD=∠DBC,
∴EB=ED,
即△BED为等腰三角形;
(2)在△AEB与△FED中,
∵
∠A=∠F
∠AEB=∠FED
AB=FD
,
∴△AEB≌△FED(AAS),
∴AE=EF,
根据折叠可得:BF=BC=4,
设AE=x,
则EF=x,BE=BF-EF=4-x,
在Rt△AEB中,由勾股定理可得:AB
2
+AE
2
=EB
2
,
代入得:3
2
+x
2
=(4-x)
2
,
解得:x=
7
8
,
即AE=
7
8
.
解:(1)由折叠的性质可得:∠EBD=∠DBC,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠EDB=∠DBC,
∴∠EBD=∠DBC,
∴EB=ED,
即△BED为等腰三角形;
(2)在△AEB与△FED中,
∵
∠A=∠F
∠AEB=∠FED
AB=FD
,
∴△AEB≌△FED(AAS),
∴AE=EF,
根据折叠可得:BF=BC=4,
设AE=x,
则EF=x,BE=BF-EF=4-x,
在Rt△AEB中,由勾股定理可得:AB
2
+AE
2
=EB
2
,
代入得:3
2
+x
2
=(4-x)
2
,
解得:x=
7
8
,
即AE=
7
8
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
(1)根据折叠的性质可得∠EBD=∠DBC,然后根据平行线的性质得出∠EDB=∠DBC,继而可得∠EBD=∠DBC,证明EB=ED,即△BED为等腰三角形;
(2)根据折叠的性质易得△AEB≌△FED,设AE=x,得出BE=4-x,然后根据勾股定理,代入数据求解即可.
此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理等知识,利用已知设出AE的长,表示出BE的长是解题关键.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )