试题
题目:
如图,将长方形纸片的一角斜折,使顶点A落在A′处,EF为折痕;再将另一角斜折,使顶点B落在EA′上B′点处,折痕为EG;观察并估计∠FEG=
90°
90°
.再测量进行验证.你能说出理由吗?若被折角∠AEF=30°,求∠A′EB的度数.
答案
90°
解:∵由折叠的性质可得:∠AEF=∠A′EF=
1
2
∠A′EA,∠BEC=∠B′EC=
1
2
∠B′EB,
∴∠FEG=∠A′EF+∠B′EC=
1
2
∠A′EA+
1
2
∠B′EB=
1
2
(∠A′EA+∠B′EB)=90°.
∵∠AEF=30°,
∴∠A′EA=2′AEF=60°,
∴∠A′EB=180°-∠A′EA=120°.
故答案为:90°.
考点梳理
考点
分析
点评
角的计算;翻折变换(折叠问题).
由折叠的性质可得:∠AEF=∠A′EF=
1
2
∠A′EA,∠BEC=∠B′EC=
1
2
∠B′EB,继而可得∠FEG=90°,又由被折角∠AEF=30°,可求得∠A′EA的度数,继而求得∠A′EB的度数.
此题考查了折叠的性质以及角的计算.此题比较简单,注意掌握折叠前后图形的对应关系.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )