试题
题目:
如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是( )
A.12
B.10
C.8
D.6
答案
C
解:∵△ADE与△ADC关于AD对称,
∴△ADE≌△ADC,
∴DE=DC,∠AED=∠C=90°,
∴∠BED=90°.
∵∠B=30°,
∴BD=2DE.
∵BC=BD+CD=24,
∴24=2DE+DE,
∴DE=8.
故选C.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.
本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.
找相似题
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·葫芦岛)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·淄博)如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
(2012·西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )