试题
题目:
解决问题:(1)甲、乙同时各掷一枚骰子一次.
(2)求出两个朝上数字的积.
(3)若得到的积为偶数则甲得1分,否则乙得1分.
(4)这个游戏对甲、乙双方公平吗?为什么?
(5)若不公平,你们能修改规则,使之公平吗?你们能想出多少种方法.
答案
解:所得积是奇数的概率为
1
2
×
1
2
=
1
4
,故甲获胜的概率为
1-
1
4
=
3
4
,乙获胜的概率为
1
4
,
甲乙获胜概率不相等,故游戏对甲乙双方不公平.
能修改规则使之公平.改为:所得两个数字同为奇数则甲获胜,同为偶数则乙获胜.
解:所得积是奇数的概率为
1
2
×
1
2
=
1
4
,故甲获胜的概率为
1-
1
4
=
3
4
,乙获胜的概率为
1
4
,
甲乙获胜概率不相等,故游戏对甲乙双方不公平.
能修改规则使之公平.改为:所得两个数字同为奇数则甲获胜,同为偶数则乙获胜.
考点梳理
考点
分析
点评
游戏公平性.
游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等即可.
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.
找相似题
甲、乙、丙三位同学玩抛掷A、B两枚硬币的游戏,游戏规则是这样:抛出A币正面和B币正面,甲赢;抛出A币反面和B币反面,乙赢;抛出A币正面和B币反面,丙赢.在这个游戏中,谁赢的机会最大( )
现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就得胜.在这个游戏中,若采取合理的策略,你认为( )
若“抢30”游戏,规划是:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就得胜,若改成“抢32”,那么采取适当策略,其结果是( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )
李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.
两人轮流掷骰子,游戏规则如下:
两颗骰子朝上的面颜色相同时,李红是赢家;
两颗骰子朝上的面颜色相异时,王英是赢家.
已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是( )