试题
题目:
(2013·宜宾)为响应我市“中国梦”·“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦
·我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.
等级
频数
频率
一等奖
a
0.1
二等奖
10
0.2
三等奖
b
0.4
优秀奖
15
0.3
请你根据以上图表提供的信息,解答下列问题:
(1)a=
5
5
,b=
20
20
,n=
144
144
.
(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.
答案
5
20
144
解:(1)观察统计表知,二等奖的有10人,频率为0.2,
故参赛的总人数为10÷0.2=50人,
a=50×0.1=5人,b=50×0.4=20.
n=0.4×360°=144°,
故答案为:5,20,144;
(2)列表得:
A
B
C
王
李
A
-
AB
AC
A王
A李
B
BA
-
BC
B王
B李
C
CA
CB
-
C王
C李
王
王A
王B
王C
-
王李
李
李A
李B
李C
李王
-
∵共有20种等可能的情况,恰好是王梦、李刚的有2种情况,
∴恰好选中王梦和李刚两位同学的概率P=
2
20
=
1
10
.
考点梳理
考点
分析
点评
专题
列表法与树状图法;频数(率)分布表;扇形统计图.
(1)首先利用频数、频率之间的关系求得参赛人数,然后乘以一等奖的频率即可求得a值,乘以三等奖的频率即可求得b值,用三等奖的频率乘以360°即可求得n值;
(2)列表后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
图表型.
找相似题
(2013·自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )
(2013·泰安)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
(2013·台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·龙岩)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则不重复的3个数字组成的三位数中是“凸数”的概率是( )