题目:
将一枚六个面分别标有1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b.
(1)求点(a,b)落在直线y=2x-1上的概率;
(2)求以点O(0,0),A(4,-3),B(a,b)为顶点能构成等腰三角形的概率;
(3)求关于x,y的方程组
只有正数解的概率.
答案
解:(1)列表得:
|
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(1,2) |
(1,3) |
(1,4) |
(1,5) |
(1,6) |
2 |
(2,1) |
(2,2) |
(2,3) |
(2,4) |
(2,5) |
(2,6) |
3 |
(3,1) |
(3,2) |
(3,3) |
(3,4) |
(3,5) |
(3,6) |
4 |
(4,1) |
(4,2) |
(4,3) |
(4,4) |
(4,5) |
(4,6) |
5 |
(5,1) |
(5,2) |
(5,3) |
(5,4) |
(5,5) |
(5,6) |
6 |
(6,1) |
(6,2) |
(6,3) |
(6,4) |
(6,5) |
(6,6) |
∵落在直线y=2x-1上的点有(1,1)、(2,3)、(3,5)三个,
∴点(a,b)落在直线y=2x-1上的概率为
=
;
(2)由题意知本题是一个古典概型,
试验发生包含的事件数36种结果,
而满足条件的事件是以点(0,0)、(4,-3)、(m,n)为顶点能构成等腰三角形,
(4,3)与(3,4),(4,2),(1,1),共有4种结果,
根据古典概型概率公式得到概率是
,
(3)当2a-b=0时,方程组无解;
当2a-b≠0时,方程组的解为由a、b的实际意义为1,2,3,4,5,6可得.
易知a,b都为大于0的整数,则两式联合求解可得x=
,y=
,
∵使x、y都大于0则有
>0,
,>0,
∴解得a<1.5,b>3或者a>1.5,b<3,而a,b都为1到6的整数,
所以可知当a为1时b只能是4,5,6;或者a为2,3,4,5,6时b为1或2,
这两种情况的总出现可能有3+10=13种;
又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为
.
解:(1)列表得:
|
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(1,2) |
(1,3) |
(1,4) |
(1,5) |
(1,6) |
2 |
(2,1) |
(2,2) |
(2,3) |
(2,4) |
(2,5) |
(2,6) |
3 |
(3,1) |
(3,2) |
(3,3) |
(3,4) |
(3,5) |
(3,6) |
4 |
(4,1) |
(4,2) |
(4,3) |
(4,4) |
(4,5) |
(4,6) |
5 |
(5,1) |
(5,2) |
(5,3) |
(5,4) |
(5,5) |
(5,6) |
6 |
(6,1) |
(6,2) |
(6,3) |
(6,4) |
(6,5) |
(6,6) |
∵落在直线y=2x-1上的点有(1,1)、(2,3)、(3,5)三个,
∴点(a,b)落在直线y=2x-1上的概率为
=
;
(2)由题意知本题是一个古典概型,
试验发生包含的事件数36种结果,
而满足条件的事件是以点(0,0)、(4,-3)、(m,n)为顶点能构成等腰三角形,
(4,3)与(3,4),(4,2),(1,1),共有4种结果,
根据古典概型概率公式得到概率是
,
(3)当2a-b=0时,方程组无解;
当2a-b≠0时,方程组的解为由a、b的实际意义为1,2,3,4,5,6可得.
易知a,b都为大于0的整数,则两式联合求解可得x=
,y=
,
∵使x、y都大于0则有
>0,
,>0,
∴解得a<1.5,b>3或者a>1.5,b<3,而a,b都为1到6的整数,
所以可知当a为1时b只能是4,5,6;或者a为2,3,4,5,6时b为1或2,
这两种情况的总出现可能有3+10=13种;
又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为
.