试题
题目:
如图,已知点M、N分别在等边△ABC(等边三角形满足三边都相等,三内角都等于60°)的边BC、CA上,AM、BN交于点Q,且∠AQN=60°.
求证:AM=BN.
答案
证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
∴∠CBN+∠ABN=60°,
∵∠AQN=∠BAM+∠ABN=60°,
∴∠BAM=∠CBN.
在△ABM与△BCN中,
∠ABC=∠C
AB=BC
∠BAM=∠CBN
,
∴△ABM≌△BCN(ASA),
∴AM=BN.
证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
∴∠CBN+∠ABN=60°,
∵∠AQN=∠BAM+∠ABN=60°,
∴∠BAM=∠CBN.
在△ABM与△BCN中,
∠ABC=∠C
AB=BC
∠BAM=∠CBN
,
∴△ABM≌△BCN(ASA),
∴AM=BN.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等边三角形的性质.
先由等边三角形的性质得出AB=BC,∠ABC=∠C=60°,再结合三角形外角的性质证明∠BAM=∠CBN.然后由ASA得出△ABM≌△BCN,根据全等三角形的对应边相等即可证明AM=BN.
本题考查了等边三角形的性质,全等三角形的判定与性质,难度适中,根据等边三角形及三角形外角的性质证明出∠BAM=∠CBN是解题的关键.
证明题.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )