试题
题目:
(2010·昆山市一模)如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.
(1)求∠E的度数?
(2)用尺规作图的方法,过D点作DM⊥BE,垂足为M.(不写作法,保留作图痕迹)
(3)求证:BM=EM.
答案
(1)解:∵△ABC是等边三角形,
∴∠ACB=∠ABC=60°,
又CD=CE,∠ACB为△DCE的外角,
∴∠E=∠CDE=30°;
(2)如右图所示:
(3)证明:∵△ABC是等边三角形,D是AC中点,
∴∠DBC=∠ABD=30°,又∠E=30°,
∴∠DBC=∠E,
∴BD=ED,
又DM⊥BE,
∴BM=EM.
(1)解:∵△ABC是等边三角形,
∴∠ACB=∠ABC=60°,
又CD=CE,∠ACB为△DCE的外角,
∴∠E=∠CDE=30°;
(2)如右图所示:
(3)证明:∵△ABC是等边三角形,D是AC中点,
∴∠DBC=∠ABD=30°,又∠E=30°,
∴∠DBC=∠E,
∴BD=ED,
又DM⊥BE,
∴BM=EM.
考点梳理
考点
分析
点评
等边三角形的性质;等腰三角形的性质;作图—基本作图.
(1)根据等边三角形的性质和三角形的外角的性质进行求解;
(2)根据过直线外一点作已知直线的垂线的方法进行求作;
(3)根据等腰三角形的三线合一进行证明.
此题综合考查了等边三角形的性质、基本作图和等腰三角形的性质.全等和等腰三角形都是证明线段相等的常用方法.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )