试题
题目:
(2009·荆州)如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
答案
解:△BDC≌△AEC.理由如下:
∵△ABC、△EDC均为等边三角形,
∴BC=AC,DC=EC,∠BCA=∠ECD=60°.
从而∠BCD=∠ACE.
在△BDC和△AEC中,
BC=AC
∠BCD=∠ACE
DC=EC
,
∴△BDC≌△AEC(SAS).
解:△BDC≌△AEC.理由如下:
∵△ABC、△EDC均为等边三角形,
∴BC=AC,DC=EC,∠BCA=∠ECD=60°.
从而∠BCD=∠ACE.
在△BDC和△AEC中,
BC=AC
∠BCD=∠ACE
DC=EC
,
∴△BDC≌△AEC(SAS).
考点梳理
考点
分析
点评
专题
全等三角形的判定;等边三角形的性质.
根据等边三角形的性质得出BC=AC,DC=EC,∠BCA=∠ECD=60°,从而得出∠BCD=∠ACE,利用SAS判定△BDC≌△AEC.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
探究型.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )