试题
题目:
(2011·梅州)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=
a
a
;(直接写结果)
(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由;
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)
答案
a
解:(1)设AP的长是x,则BP=2a-x,
∴S
△APC
+S
△PBD
=
1
2
x·
3
2
x+
1
2
(2a-x)·
3
2
(2a-x)
=
3
2
x
2
-
3
ax+
3
a
2
,
当x=-
b
2a
=-
-
3
a
2×
3
2
=a时△APC与△PBD的面积之和取最小值,
故答案为:a;
(2)α的大小不会随点P的移动而变化,
理由:∵△APC是等边三角形,
∴PA=PC,∠APC=60°,
∵△BDP是等边三角形,
∴PB=PD,∠BPD=60°,
∴∠APC=∠BPD,
∴∠APD=∠CPB,
∴△APD≌△CPB,
∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°-120°=60°;
(3)此时α的大小不会发生改变,始终等于60°.
理由:∵△APC是等边三角形,
∴PA=PC,∠APC=60°,
∵△BDP是等边三角形,
∴PB=PD,∠BPD=60°,
∴∠APC=∠BPD,
∴∠APD=∠CPB,
∴△APD≌△CPB,
∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°-120°=60°.
考点梳理
考点
分析
点评
专题
等边三角形的性质;三角形内角和定理;全等三角形的判定与性质.
(1)设AP的长是x,然后利用x表示出两个三角形的面积的和,利用二次函数的性质即可求得x的值;
(2)首先证得△APD≌△CPB,然后根据三角形的外角的性质即可求解;
(3)旋转的过程中,(2)中得两个三角形的全等关系不变,因而角度不会变化.
本题考查了旋转的性质,以及全等三角形的判定与性质,正确证明两个三角形全等是解题的关键.
压轴题.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )