试题
题目:
如图所示,在等腰△ABC中,AB=AC,∠BAC=100°,延长AB到D,使AD=BC,连接DC,则∠BCD的度数是
10°
10°
.
答案
10°
解:以BC为一边在△ABC外作等边△BCE,连接AE,
∴BE=CE=BC,∠BEC=∠BCE=60°,
∵AB=AC,AE=AE,
∴△ABE≌△ACE,
∴∠CEA=∠BEA=
1
2
×60°=30°,
∵∠BAC=100°,
∴∠ABC=∠ACB=40°,
∴∠ACE=∠A=100°,
∵AD=CE,AC=AC,
∴△ACE≌△CAD,
∴∠D=∠CEA=30°,
在△ACD中,∠ACD=180°-∠D-∠A=50°,
∴∠BCD=∠ACD-∠ACB=10°.
故答案为:10°.
考点梳理
考点
分析
点评
专题
等边三角形的性质;全等三角形的判定与性质.
以BC为一边在△ABC外作等边△BCE,连接AE,证△ABE和△ACE全等,得到∠CEA=∠BEA=30°,再证△ACE和△CAD全等,推出∠D的度数,根据三角形的内角和定理求出∠ACD,即可求出答案.
本题主要考查了等边三角形的性质,全等三角形的性质和判定等知识点,作辅助线和证两个三角形全等是解此题的关键.难点是辅助线的作法.
计算题.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )