试题

题目:
青果学院如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为
3
2
3
2

答案
3
2

解:∵△ABC为等边三角形,D为AC边上的中点,
∴BD为∠ABC的平分线,且∠ABC=60°,
即∠DBE=30°,又DE=DB,
∴∠E=∠DBE=30°,
∴∠CDE=∠ACB-∠E=30°,即∠CDE=∠E,
∴CD=CE;
∵等边△ABC的周长为9,∴AC=3,
∴CD=CE=
1
2
AC=
3
2

故答案为:
3
2
考点梳理
等边三角形的性质;等腰三角形的判定与性质.
由等边三角形的三边相等且周长为9,求出AC的长为3,且∠ACB=60°;然后根据等边三角形的“三合一”的性质推知∠DBC=30°,再由等边对等角推知∠E=30°;最后由外角定理求出∠CDE也为30°,根据等角对等边得到CD=CE,都等于边长AC的一半,从而求出CE的值.
此题考查了等边三角形的性质,利用等边三角形的性质可以解决角与边的有关问题,尤其注意等腰三角形“三线合一”性质的运用,及“等角对等边”、“等边对等角”的运用.
找相似题