试题

题目:
(2009·芜湖)“六·一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务.
(1)请用列表法或画树状图法说明当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况.(用字母表示)
(2)求小明与小亮只单独出现在B区(科学启迪)、C区(智慧之光)、D区(儿童世界)三个主题展区中担任义务讲解员的概率.
答案
解:(1)当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况列表如下:
小亮
小明
A B C D
A (A,A) (B,A) (C,A) (D,A)
B (A,B) (B,B) (C,B) (D,B)
C (A,C) (B,C) (C,C) (D,C)
D (A,D) (B,D) (C,D) (D,D)
或画树形图为:
青果学院

(2)小明与小亮只单独出现在B区(科学启迪)、C区(智慧之光)、D区(儿童世界)三个主题展区中担任义务讲解员的情况有(C,B)、(D,B)、(B,C)、(D,C)、(B,D)、(C,D)6种,
故所求概率为
6
16
=
3
8
.(9分)
解:(1)当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况列表如下:
小亮
小明
A B C D
A (A,A) (B,A) (C,A) (D,A)
B (A,B) (B,B) (C,B) (D,B)
C (A,C) (B,C) (C,C) (D,C)
D (A,D) (B,D) (C,D) (D,D)
或画树形图为:
青果学院

(2)小明与小亮只单独出现在B区(科学启迪)、C区(智慧之光)、D区(儿童世界)三个主题展区中担任义务讲解员的情况有(C,B)、(D,B)、(B,C)、(D,C)、(B,D)、(C,D)6种,
故所求概率为
6
16
=
3
8
.(9分)
考点梳理
列表法与树状图法.
(1)首先分析题意:根据题意作出树状图,通过列表统计事件的总情况数,或讨论事件的分类情况.作树状图、列表时,按一定的顺序,做到不重不漏;
(2)根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
找相似题