试题
题目:
如图,已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD的夹角是多少度?
答案
解:∵△ABC是等边三角形,
∴AB=BC,∠A=∠CBD=60°,
在△ABE和△BCD中,
AB=BC
∠A=∠CBD
AE=BD
,
∴△ABE≌△BCD(SAS),
∴∠ABE=∠BCD,
∴∠BFD=∠CBE+∠BCD=∠CBE+∠ABE=∠ABC=60°,
即BE与CD的夹角是60°.
解:∵△ABC是等边三角形,
∴AB=BC,∠A=∠CBD=60°,
在△ABE和△BCD中,
AB=BC
∠A=∠CBD
AE=BD
,
∴△ABE≌△BCD(SAS),
∴∠ABE=∠BCD,
∴∠BFD=∠CBE+∠BCD=∠CBE+∠ABE=∠ABC=60°,
即BE与CD的夹角是60°.
考点梳理
考点
分析
点评
等边三角形的性质;全等三角形的判定与性质.
由D、E分别是等边△ABC中AB、AC上的点,且AE=BD,易证得△ABE≌△BCD(SAS),则可得∠ABE=∠BCD,继而可求得∠BFD=∠CBE+∠BCD=∠CBE+∠ABE=∠ABC=60°.
此题考查了等边三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )