试题
题目:
如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE=2,求EM+BM的最小值.
答案
解:连接CE,与AD交于点M.则CE就是BM+ME的最小值.
取BE中点F,连接DF.
∵等边△ABC的边长为6,AE=2,
∴BE=AB-AE=6-2=4,
∴BF=FE=AE=2,
又∵AD是BC边上的中线,
∴DF是△BCE的中位线,
∴CE=2DF,CE∥DF,
又∵E为AF的中点,
∴M为AD的中点,
∴ME是△ADF的中位线,
∴DF=2ME,
∴CE=2DF=4ME,
∴CM=
3
4
CE.
在直角△CDM中,CD=
1
2
BC=3,DM=
1
2
AD,
CM=
C
D
2
+M
D
2
=
3
7
2
,
CE=
4
3
×
3
7
2
=2
7
,
∵BM+ME=CE,
∴BM+ME的最小值为2
7
.
解:连接CE,与AD交于点M.则CE就是BM+ME的最小值.
取BE中点F,连接DF.
∵等边△ABC的边长为6,AE=2,
∴BE=AB-AE=6-2=4,
∴BF=FE=AE=2,
又∵AD是BC边上的中线,
∴DF是△BCE的中位线,
∴CE=2DF,CE∥DF,
又∵E为AF的中点,
∴M为AD的中点,
∴ME是△ADF的中位线,
∴DF=2ME,
∴CE=2DF=4ME,
∴CM=
3
4
CE.
在直角△CDM中,CD=
1
2
BC=3,DM=
1
2
AD,
CM=
C
D
2
+M
D
2
=
3
7
2
,
CE=
4
3
×
3
7
2
=2
7
,
∵BM+ME=CE,
∴BM+ME的最小值为2
7
.
考点梳理
考点
分析
点评
轴对称-最短路线问题;等边三角形的性质.
要求EM+BM的最小值,需考虑通过作辅助线转化EM,BM的值,从而找出其最小值求解.
此题主要考查了轴对称-最短路线问题和等边三角形的性质和轴对称及勾股定理等知识的综合应用,根据已知得出M点位置是解题关键.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )