试题
题目:
(2011·台湾)一签筒内有四支签,分别标记号码1,2,3,4.已知小武以每次取一支且取后不放回的方式,取两支签,若每一种结果发生的机会都相同,则这两支签的号码数总和是奇数的机率为( )
A.
3
4
B.
2
3
C.
1
2
D.
1
3
答案
B
解:根据题意列树状图:
共有12种等可能的结果,其中和是奇数的有8种,
所以这两支签的号码数总和是奇数的机率=
8
12
=
2
3
.
故选B.
考点梳理
考点
分析
点评
列表法与树状图法.
先利用树状图展示所有12种的等可能的结果数,然后找出和为奇数的结果数,最后利用概率的概念求解即可.
本题考查了利用树状图求事件概率的方法:先利用树状图展示所有等可能的结果数n,再找出某事件所占的结果数m,然后根据P=
m
n
计算即可.
找相似题
(2013·自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )
(2013·泰安)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
(2013·台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·龙岩)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则不重复的3个数字组成的三位数中是“凸数”的概率是( )