试题

题目:
青果学院已知,如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.
请根据条件进行推理,得出结论,并在括号内注明理由.
证明:∵BF、DE分别平分∠ABC与∠ADC,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ADC
.(
角平分线定义
角平分线定义

∵∠ABC=∠ADC,
∵∠
1
1
=∠
2
2

∵∠1=∠3,
∴∠2=
3
3
.(等量代换)
AB
AB
CD
CD
.(
内错角相等,两直线平行
内错角相等,两直线平行

答案
角平分线定义

1

2

3

AB

CD

内错角相等,两直线平行

解∵BF、DE分别平分∠ABC与∠ADC,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ADC
.(角平分线定义 )
∵∠ABC=∠ADC,
∵∠1=∠2.
∵∠1=∠3,
∴∠2=∠3.(等量代换)
∴AB∥CD.(内错角相等,两直线平行)
故答案为:角平分线定义;1;2;∠3;AB;CD;内错角相等,两直线平行.
考点梳理
平行线的判定与性质.
根据几何证明题的格式和有关性质定理,填空即可.
此题考查了平行线的判定与性质,用到的知识点是平行线的判定与性质、角平分线定义,要掌握几何证明题的格式,会注明理由.
推理填空题.
找相似题