试题
题目:
如图,AB⊥BD,CD⊥BD,∠A+∠AEF=180°.
以下是某同学说明CD∥EF的推理过程或理由,请你在横线上补充完整其推理过程或理由.
解:
因为AB⊥BD,CD⊥BD(已知)
所以∠ABD=∠CDB=90°(垂直定义)
所以∠ABD+∠CDB=180°
所以 AB∥(
CD
CD
)(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
因为∠A+∠AEF=180°(已知)
所以AB∥EF(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
所以 CD∥EF(
平行于同一条直线的两直线平行
平行于同一条直线的两直线平行
)
答案
CD
同旁内角互补,两直线平行
同旁内角互补,两直线平行
平行于同一条直线的两直线平行
解:因为AB⊥BD,CD⊥BD(已知)
所以∠ABD=∠CDB=90°(垂直定义)
所以∠ABD+∠CDB=180°
所以 AB∥CD(同旁内角互补,两直线平行)
因为∠A+∠AEF=180°(已知)
所以AB∥EF(同旁内角互补,两直线平行)
所以 CD∥EF(平行于同一条直线的两直线平行)
故答案为:CD;同旁内角互补,两直线平行;同旁内角互补,两直线平行;平行于同一条直线的两直线平行
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
由AB与CD都与BD垂直,利用垂直的定义得到一对角为直角,进而确定出一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD平行,再由一对角互补得到AB与EF平行,利用平行于同一条直线的两直线平行即可得证.
此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
推理填空题.
找相似题
(2013·恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于( )
如图所示,已知∠1=30°,∠D=60°,AB⊥AC,请求∠ACD的大小.
下面是贝贝同学的部分解答,请补充完整,并在括号内填上适当的理由.
解:∵AB⊥AC
∴∠BAC=90°
(垂直定义)
(垂直定义)
∵∠1=30°,∠D=60°
∴∠D+∠BAD=180°
(等式性质),
(等式性质),
∴AB∥CD
(两直线平行,内错角相等),
(两直线平行,内错角相等),
∴
∠BAC=∠ACD(两直线平行,内错角相等),
∵∠BAC=90°(已知),
∴∠ACD=90°(等量代换)
∠BAC=∠ACD(两直线平行,内错角相等),
∵∠BAC=90°(已知),
∴∠ACD=90°(等量代换)
.
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且 AE∥BC.
求证:EF∥CD.
如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥C
D于F.
求证:∠1=∠2.请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,(
已知
已知
)
所以∠A+∠ABC=104°-∠2+76°+∠2,(等式性质)
即∠A+∠ABC=180°
所以AD∥BC,(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
所以∠1=∠DBC,(
两直线平行,内错角相等
两直线平行,内错角相等
)
因为BD⊥DC,EF⊥DC,(
已知
已知
)
所以∠BDC=90°,∠EFC=90°,(
垂线的定义
垂线的定义
)
所以∠BDC=∠EFC,
所以BD∥
EF
EF
,(
同位角相等,两直线平行
同位角相等,两直线平行
)
所以∠2=∠DBC,(
两直线平行,同位角相等
两直线平行,同位角相等
)
所以∠1=∠2(
等量代换
等量代换
).