试题
题目:
如图所示,已知BD平分∠ABC,∠C=62°,∠ABD=30°,∠ADC=118°,求∠A的度数.
答案
解:∵∠C=62°,∠ADC=118°,
∴∠C+∠ADC=180°,
∴AD∥BC(同旁内角互补,两直线平行),
∴∠ADB=∠BDC(两直线平行,内错角相等);
又∵BD平分∠ABC,∠ABD=30°,
∴∠ABD=∠DBC=∠ADB=30°,
∴∠A=180°-∠ABD-∠ADB=120°(三角形内角和定理),
即∠A=120°.
解:∵∠C=62°,∠ADC=118°,
∴∠C+∠ADC=180°,
∴AD∥BC(同旁内角互补,两直线平行),
∴∠ADB=∠BDC(两直线平行,内错角相等);
又∵BD平分∠ABC,∠ABD=30°,
∴∠ABD=∠DBC=∠ADB=30°,
∴∠A=180°-∠ABD-∠ADB=120°(三角形内角和定理),
即∠A=120°.
考点梳理
考点
分析
点评
平行线的判定与性质.
根据平行线的判定定理(同旁内角互补,两直线平行)推知AD∥BC,然后利用角平分线的性质、平行线的性质以及三角形内角和是180°即可求得∠A的度数.
本题考查了平行线的判定与性质.解答该题时,需要找出隐含在题干中的已知条件△ABD的内角和是180°.
找相似题
(2013·恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于( )
如图所示,已知∠1=30°,∠D=60°,AB⊥AC,请求∠ACD的大小.
下面是贝贝同学的部分解答,请补充完整,并在括号内填上适当的理由.
解:∵AB⊥AC
∴∠BAC=90°
(垂直定义)
(垂直定义)
∵∠1=30°,∠D=60°
∴∠D+∠BAD=180°
(等式性质),
(等式性质),
∴AB∥CD
(两直线平行,内错角相等),
(两直线平行,内错角相等),
∴
∠BAC=∠ACD(两直线平行,内错角相等),
∵∠BAC=90°(已知),
∴∠ACD=90°(等量代换)
∠BAC=∠ACD(两直线平行,内错角相等),
∵∠BAC=90°(已知),
∴∠ACD=90°(等量代换)
.
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且 AE∥BC.
求证:EF∥CD.
如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥C
D于F.
求证:∠1=∠2.请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,(
已知
已知
)
所以∠A+∠ABC=104°-∠2+76°+∠2,(等式性质)
即∠A+∠ABC=180°
所以AD∥BC,(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
所以∠1=∠DBC,(
两直线平行,内错角相等
两直线平行,内错角相等
)
因为BD⊥DC,EF⊥DC,(
已知
已知
)
所以∠BDC=90°,∠EFC=90°,(
垂线的定义
垂线的定义
)
所以∠BDC=∠EFC,
所以BD∥
EF
EF
,(
同位角相等,两直线平行
同位角相等,两直线平行
)
所以∠2=∠DBC,(
两直线平行,同位角相等
两直线平行,同位角相等
)
所以∠1=∠2(
等量代换
等量代换
).