试题
题目:
如图:已知AB∥CD,那么∠B+∠BED+∠D等于多少度,为什么?
解:过点E作EF∥AB
得∠B+∠BEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
因为AB∥CD(
已知
已知
)
EF∥AB(所作)
所以EF∥CD(
平行于同一直线的两直线平行
平行于同一直线的两直线平行
)
得∠
FED
FED
+∠
D
D
=180
0
(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
因此∠B+∠BEF+∠DEF+∠D=
360°
360°
.
即∠B+∠BED+∠D=
360°
360°
.
答案
两直线平行,同旁内角互补
已知
平行于同一直线的两直线平行
FED
D
两直线平行,同旁内角互补
360°
360°
解:∠B+∠BED+∠D等360度.理由如下:
过点E作EF∥AB,
则∠B+∠BEF=180°,
∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠FED+∠D=180°,
∴∠B+∠BEF+∠DEF+∠D=360°,
即∠B+∠BED+∠D=360°.
故答案为:两直线平行,同旁内角互补;已知;平行于同一直线的两直线平行;FED,D,两直线平行,同旁内角互补;360°;360°.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
过点E作EF∥AB,根据平行线的性质得到∠B+∠BEF=180°,且EF∥CD,则有∠FED+∠D=180°,把两等式相加得到∠B+∠BEF+∠DEF+∠D=360°,即∠B+∠BED+∠D=360°.
本题考查了平行线的性质与判断:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
推理填空题.
找相似题
(2013·恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于( )
如图所示,已知∠1=30°,∠D=60°,AB⊥AC,请求∠ACD的大小.
下面是贝贝同学的部分解答,请补充完整,并在括号内填上适当的理由.
解:∵AB⊥AC
∴∠BAC=90°
(垂直定义)
(垂直定义)
∵∠1=30°,∠D=60°
∴∠D+∠BAD=180°
(等式性质),
(等式性质),
∴AB∥CD
(两直线平行,内错角相等),
(两直线平行,内错角相等),
∴
∠BAC=∠ACD(两直线平行,内错角相等),
∵∠BAC=90°(已知),
∴∠ACD=90°(等量代换)
∠BAC=∠ACD(两直线平行,内错角相等),
∵∠BAC=90°(已知),
∴∠ACD=90°(等量代换)
.
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且 AE∥BC.
求证:EF∥CD.
如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥C
D于F.
求证:∠1=∠2.请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,(
已知
已知
)
所以∠A+∠ABC=104°-∠2+76°+∠2,(等式性质)
即∠A+∠ABC=180°
所以AD∥BC,(
同旁内角互补,两直线平行
同旁内角互补,两直线平行
)
所以∠1=∠DBC,(
两直线平行,内错角相等
两直线平行,内错角相等
)
因为BD⊥DC,EF⊥DC,(
已知
已知
)
所以∠BDC=90°,∠EFC=90°,(
垂线的定义
垂线的定义
)
所以∠BDC=∠EFC,
所以BD∥
EF
EF
,(
同位角相等,两直线平行
同位角相等,两直线平行
)
所以∠2=∠DBC,(
两直线平行,同位角相等
两直线平行,同位角相等
)
所以∠1=∠2(
等量代换
等量代换
).