试题
题目:
(2009·沈阳)已知:如图,在·ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.
求证:四边形MFNE是平行四边形.
答案
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
又∵DF∥BE,
∴四边形BEDF是平行四边形,
∴DE=BF,ME∥NF,
∴AD-DE=BC-BF,即AE=CF,
又∵AE∥CF,
∴四边形AFCE是平行四边形,
∴MF∥NE,
∴四边形MFNE是平行四边形.
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
又∵DF∥BE,
∴四边形BEDF是平行四边形,
∴DE=BF,ME∥NF,
∴AD-DE=BC-BF,即AE=CF,
又∵AE∥CF,
∴四边形AFCE是平行四边形,
∴MF∥NE,
∴四边形MFNE是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质.
利用平行四边形的判定定理及定义:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形.
本题主要考查了平行四边形的判定及定义,属于简单题.
证明题.
找相似题
(2005·天津)如图,在·ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
(2013·明溪县质检)图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
如图,已知四边形ABCD的面积为8cm
2
,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )