试题
题目:
(2012·贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是( )
A.正三角形
B.正四边形
C.正六边形
D.正八边形
答案
D
解:A、正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;
B、正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;
C、正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;
D、正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意;
故选D.
考点梳理
考点
分析
点评
专题
平面镶嵌(密铺).
分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.
本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.
常规题型.
找相似题
(2013·六盘水)下列图形中,单独选用一种图形不能进行平面镶嵌的是( )
(2011·泉州)下列正多边形中,不能铺满地面的是( )
(2011·内江)下列多边形中,不能够单独铺满地面的是( )
(2010·湛江)小亮的父亲想购买同一种大小一样、形状相同的地板砖铺设地面.小亮根据所学的知识告诉父亲,为了能够做到无缝隙、不重叠地铺设,购买的地板砖形状不能是( )
(2010·广元)李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( )