试题
题目:
如图,在平行四边形ABCD中,点E是BC的中点,AB的延长线与DE的延长线交于点F.
(1)请指出图中哪些线段与线段CD相等;
(2)连接BD、CF,判断四边形DBFC的形状,并证明你的结论.
答案
解:(1)AB=CD,BF=CD;
(2)四边形DBFC为平行四边形,理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD即AF∥CD.
∴∠F=∠CDE
∵BE=CE,∠BEF=∠CED
∴△BEF≌△CED
∴DE=FE
∴四边形DBFC为平行四边形.
解:(1)AB=CD,BF=CD;
(2)四边形DBFC为平行四边形,理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD即AF∥CD.
∴∠F=∠CDE
∵BE=CE,∠BEF=∠CED
∴△BEF≌△CED
∴DE=FE
∴四边形DBFC为平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;全等三角形的判定与性质.
(1)利用平行四边形的对边相等和三角形全等的性质可找出图中与线段CD相等的线段.
(2)利用平行四边形的性质得∠F=∠CDE,根据AAS证明△BEF≌△CED,根据全等三角形的对应边相等,得DE=FE,由对角线互相平分的四边形是平行四边形证得四边形DBFC为平行四边形.
本题考查的知识点为:对角线互相平分的四边形是平行四边形.
证明题.
找相似题
(2005·天津)如图,在·ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
(2013·明溪县质检)图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
如图,已知四边形ABCD的面积为8cm
2
,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )