试题
题目:
如图,·ABCD中对角线AC、BD相交于点O,AE⊥BD于E,CF⊥BD于F.
(1)求证:△ABE≌△CDF;
(2)连接AF、CE,试判断四边形AECF是什么特殊的四边形?写出结论并加以证明.
答案
(1)证明:∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠ABE=∠CDF,
∵AE⊥BD于E,CF⊥BD于F,
∵在△ABE和△CDF中,
∠ABE=∠CDF
∠AEB=∠DFC=90°
AB=DC
,
∴△ABE≌△CDF(AAS);
(2)连接AF、CE,试判断四边形AECF是平行四边形,
理由如下:
证明:∵AE⊥BD,CF⊥BD,
∴∠AEO=∠CFO.
又∵∠AOE=∠COF,
∴OA=OC,
∵在△AOE和△COF中,
OA=OC
∠AEO=∠CFO
∠AOE=∠COF
,
∴△AOE≌△COF(AAS),
∴OF=OE.
又∵OA=OC,
∴四边形AFCE是平行四边形.
(1)证明:∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠ABE=∠CDF,
∵AE⊥BD于E,CF⊥BD于F,
∵在△ABE和△CDF中,
∠ABE=∠CDF
∠AEB=∠DFC=90°
AB=DC
,
∴△ABE≌△CDF(AAS);
(2)连接AF、CE,试判断四边形AECF是平行四边形,
理由如下:
证明:∵AE⊥BD,CF⊥BD,
∴∠AEO=∠CFO.
又∵∠AOE=∠COF,
∴OA=OC,
∵在△AOE和△COF中,
OA=OC
∠AEO=∠CFO
∠AOE=∠COF
,
∴△AOE≌△COF(AAS),
∴OF=OE.
又∵OA=OC,
∴四边形AFCE是平行四边形.
考点梳理
考点
分析
点评
平行四边形的判定与性质;全等三角形的判定与性质.
(1)根据有两角和一个角的对边相等即可证明:△ABE≌△CDF;
(2)连接AF、CE,试判断四边形AECF是平行四边形,可先证明△AOF≌△COE,可得OF=OE,又有OA=OC,根据对角线互相平分的四边形是平行四边形,可得四边形AFCE是平行四边形.
本题考查了平行四边形的性质和判定,其中平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
找相似题
(2005·天津)如图,在·ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
(2013·明溪县质检)图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
如图,已知四边形ABCD的面积为8cm
2
,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )