试题

题目:
青果学院已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,试证明:
(1)OA=OC,OB=OD;
(2)四边形AECF是平行四边形;
(3)如果E、F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.
答案
证明:(1)∵AC,BD是平行四边形ABCD中的对角线,O是交点,
∴OA=OC,OB=OD.

(2)∵OB=OD,点E、F分别为BO、DO的中点,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.

(3)结论仍然成立.
理由:∵BE=DF,OB=OD,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.
所以结论仍然成立.
证明:(1)∵AC,BD是平行四边形ABCD中的对角线,O是交点,
∴OA=OC,OB=OD.

(2)∵OB=OD,点E、F分别为BO、DO的中点,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.

(3)结论仍然成立.
理由:∵BE=DF,OB=OD,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.
所以结论仍然成立.
考点梳理
平行四边形的判定与性质;全等三角形的判定与性质.
(1)平行四边形的对角线互相平分,从而可得到结论.
(2)对角线互相平分的四边形是平行四边形,根据这个判定定理可证明.
(3)仍然成立的,仍旧根据对角线互相平分的四边形是平行四边形可证明.
本题考查平行四边形的判定和性质,对角线互相平分的四边形是平行四边形以及全等三角形的判定和性质.
找相似题