答案
证明:(1)∵AC,BD是平行四边形ABCD中的对角线,O是交点,
∴OA=OC,OB=OD.
(2)∵OB=OD,点E、F分别为BO、DO的中点,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.
(3)结论仍然成立.
理由:∵BE=DF,OB=OD,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.
所以结论仍然成立.
证明:(1)∵AC,BD是平行四边形ABCD中的对角线,O是交点,
∴OA=OC,OB=OD.
(2)∵OB=OD,点E、F分别为BO、DO的中点,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.
(3)结论仍然成立.
理由:∵BE=DF,OB=OD,
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形.
所以结论仍然成立.