试题
题目:
如图所示,在△ABC中,AB=AC,E是AB中点,D在BC上,延长ED到F,使ED=DF=EB,连接FC.求证:四边形AEFC是平行四边形.
答案
证明:∵EB=DE,
∴∠B=∠EDB,
∵AB=AC,
∴∠B=∠ACB.
∴∠EDB=∠ACB.
∴EF∥AC.
∵ED=DF=BE,
∴EB=
1
2
EF.
又∵E为AB中点,
∴EB=
1
2
AB=
1
2
AC.
∴EF=AC.
∴四边形AEFC为平行四边形.
证明:∵EB=DE,
∴∠B=∠EDB,
∵AB=AC,
∴∠B=∠ACB.
∴∠EDB=∠ACB.
∴EF∥AC.
∵ED=DF=BE,
∴EB=
1
2
EF.
又∵E为AB中点,
∴EB=
1
2
AB=
1
2
AC.
∴EF=AC.
∴四边形AEFC为平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;等腰三角形的性质.
利用等边对等角得到一些角相等,进行转换后得到AC∥EF;利用中点得到这组对边也相等.
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
证明题.
找相似题
(2005·天津)如图,在·ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
(2013·明溪县质检)图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
如图,已知四边形ABCD的面积为8cm
2
,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )